Evaluating land use and climate change impacts on Ravi river flows using GIS and hydrological modeling approach

Abstract The study investigates the interplay of land use dynamics and climate change on the hydrological regime of the Ravi River using a comprehensive approach integrating Geographic Information System (GIS), remote sensing, and hydrological modeling at the catchment scale. Employing the Soil and Water Assessment Tool (SWAT) model, simulations were conducted to evaluate the hydrological response of the Ravi River to both current conditions and projected future scenarios of land use and climate change. This study differs from previous ones by simulating future land use and climate scenarios, offering a solid framework for understanding their impact on river flow dynamics. Model calibration and validation were performed for distinct periods (1999–2002 and 2003–2005), yielding satisfactory performance indicators (NSE, R 2 , PBIAS = 0.85, 0.83, and 10.01 in calibration and 0.87, 0.89, and 7.2 in validation). Through supervised classification techniques on Landsat imagery and TerrSet modeling, current and future land use maps were generated, revealing a notable increase in built-up areas from 1990 to 2020 and projections indicating further expansion by 31.7% from 2020 to 2100. Climate change projections under different socioeconomic pathways (SSP2 and SSP5) were derived for precipitation and temperature, with statistical downscaling applied using the CMhyd model. Results suggest substantial increases in precipitation (10.9 − 14.9%) and temperature (12.2 − 15.9%) across the SSP scenarios by the end of the century. Two scenarios, considering future climate conditions with current and future land use patterns, were analyzed to understand their combined impact on hydrological responses. In both scenarios, inflows to the Ravi River are projected to rise significantly (19.4 − 28.4%) from 2016 to 2100, indicating a considerable alteration in seasonal flow patterns. Additionally, historical data indicate a concerning trend of annual groundwater depth decline (0.8 m/year) from 1996 to 2020, attributed to land use and climate changes. […]

Click here to view original web page at www.nature.com

Scroll to Top